保温瓶厂家
免费服务热线

Free service

hotline

010-00000000
保温瓶厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

GPUCPU不止一字之差那么简单

发布时间:2020-07-21 18:16:47 阅读: 来源:保温瓶厂家

1. 引言

本文引用地址:自1999年NVIDIA提出GPU的概念以来,GPU的高浮点运算能力引发了不少的话题,比如GPU将取代CPU。基于GPU的特殊性,研究人员正在从事相关方面的研究,以期充分地利用GPU高运算速度。

随着计算机图形处理硬件的又一次升级,即计算机图形处理器的升级。图形处理器的应用已成为热门的课题。

2. GPU的功能

GPU(Graphic ProcessingUnit)即图形处理器。1999年NVIDIA公司发布GeForce 256图形处理芯片时,首先提出GPU的概念。一块标准的GPU主要包括2D单元、3D单元、视频处理单元、FSAA(Full Scene Anti—aliasing,全景抗锯齿)单元和显存管理单元等。

它设计的宗旨是实现图形加速,现在最主要的是实现3D图形加速,因此它的设计基本上是为3D图形加速的相关运算来优化的,如消隐、纹理映射、图形的坐标位置变换与光照计算等等。这几年GPU发展迅猛,2007年NVIDIA甚至提出“重GPU核心,轻CPU频率”的论调。这是否意味着GPU时代的到来?

3. GPU与CPU的比较

GPU以其高速的浮点运算能力迅速地吸引了人们的眼球。

其计算能力到底有多大?CPU的浮点运算能力一般在10 Gflops以下(每秒可进行10亿次浮点运算),而GeForce6系列的浮点运算能力已经在40 Gflops左右,GeForce7950GX2更是达到了384Gflops;在向量计算方面能够获得比CPU高出十倍的计算效率。

这得益于它是对图形处理量身定制。GPU并行计算的能力更是强大,它内部具有快速存储系统,NVIDIA的8800有128个处理器,此外,GPU的硬件设计能够管理数千个并行线程,这数千个线程全部由GPU创建和管理而不需要开发人员进行任何编程与管理。然而,现在GPU还是协助CPU进行图形处理,着实浪费不少其运算能力。

值得注意的是,如此强大的计算能力具有针对性———图形计算,如Z- buffering、纹理映射与光照计算等。这类计算都是针对大量的平行数据,运算的数据量大,但是运算的类型却并不复杂,还具有类似性,计算性强但是逻辑性不强,如矩阵运算就是图形运算的典型特征。而CPU是设计用来处理通用任务的处理、加工、运算以及系统核心控制等工作,CPU的微架构是为高效率处理数据相关性不大的计算类、复杂繁琐的非计算类等工作而优化的。所以现在CPU和GPU还在自己的轨道上各司其职。

GPU特殊的硬件架构突出了对CPU的优势:拥有高带宽的独立显存;浮点运算性能高;几何处理能力强;适合处理并行计算任务;适合进行重复计算;适合图像或视频处理任务;能够大幅度降低系统成本。

沈阳隆鼻价格

西安磨骨价格

上海面部填充医院

相关阅读